首页> 外文OA文献 >Dissipation, Generalized Free Energy, and a Self-consistent Nonequilibrium Thermodynamics of Chemically Driven Open Subsystems
【2h】

Dissipation, Generalized Free Energy, and a Self-consistent Nonequilibrium Thermodynamics of Chemically Driven Open Subsystems

机译:耗散,广义自由能和自洽   化学驱动开放子系统的非平衡热力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nonequilibrium thermodynamics of a system situated in a sustained environmentwith influx and efflux is usually treated as a subsystem in a larger, closed"universe". It remains a question what the minimally required description forthe surrounding of such an open driven system is, so that its nonequilibriumthermodynamics can be established solely based on the internal stochastickinetics. We provide a solution to this problem using insights from studies ofmolecular motors in a chemical nonequilibrium steady state (NESS) withsustained external drive through a regenerating system, or in a quasi-steadystate (QSS) with an excess amount of ATP, ADP, and Pi. We introduce the keynotion of {\em minimal work} that is needed, $W_{min}$, for the externalregenerating system to sustain a NESS ({\em e.g.}, maintaining constantconcentrations of ATP, ADP and Pi for a molecular motor). Using a Markov(master-equation) description of a motor protein, we illustrate that the NESSand QSS have identical kinetics as well as the Second Law in terms of a samepositive entropy production rate. The difference between the heat dissipationof a NESS and its corresponding QSS is exactly the $W_{min}$. This provides ajustification for introducing an {\em ideal external regenerating system} andyields a {\em free energy balance equation} between the net free energy input$F_{in}$ and total dissipation $F_{dis}$ in an NESS: $F_{in}$ consists ofchemical input minus mechanical output; $F_{dis}$ consists of dissipative heat;and the amount of useful energy becoming heat is the NESS entropy production.Furthermore, we show that for non-stationary systems, the $F_{dis}$ and$F_{in}$ correspond to the entropy production rate and housekeeping heat instochastic thermodynamics, and identify a relative entropy $H$ as a generalizedfree energy.
机译:通常将位于具有涌入和流出的持续环境中的系统的非平衡热力学视为一个较大的封闭“宇宙”中的子系统。仍然有一个问题是围绕这种开放式驱动系统的最低限度描述是什么,以便仅基于内部粘滞性药物就可以建立其非平衡热力学。我们通过研究分子电动机在化学非平衡稳态(NESS)中通过再生系统维持外部驱动,或在准稳态(QSS)中使用过量的ATP,ADP和Pi来研究分子电动机,从而提供了解决方案。 。我们介绍了用于维持NESS的外部再生系统所需的{\ em最小功}的关键概念$ W_ {min} $({\ em eg},对于分子马达而言,保持ATP,ADP和Pi的浓度恒定) 。使用运动蛋白的马尔可夫(主方程)描述,我们证明了NESS和QSS在相同的正熵产生速率方面具有相同的动力学以及第二定律。 NESS及其对应的QSS的散热量之差恰好是$ W_ {min} $。这为引入{\ em理想的外部再生系统}提供了合理性,并在NESS中产生了{\ em自由能量平衡方程}在NESS中的净自由能输入$ F_ {in} $和总耗散$ F_ {dis} $。 F_ {in} $包括化学投入减去机械产出; $ F_ {dis} $由耗散热量组成;变成热量的有用能量是NESS熵的产生。此外,我们表明,对于非平稳系统,$ F_ {dis} $和$ F_ {in} $对应于熵生产率和管家热随机热力学,并将相对熵$ H $标识为广义自由能。

著录项

  • 作者

    Ge, Hao; Qian, Hong;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号